This phase I trial tests the safety, side effects, and best dose of sunitinib malate in combination with lutetium Lu 177 dotatate in treating patients with pancreatic neuroendocrine tumors. Sunitinib malate is in a class of medications called kinase inhibitors and a form of targeted therapy that blocks the action of abnormal proteins called VEGFRs that signal tumor cells to multiply. This helps stop or slow the spread of tumor cells. Radioactive drugs, such as lutetium Lu 177 dotatate, may carry radiation directly to tumor cells and not harm normal cells. It is also a form of targeted therapy because it works by attaching itself to specific molecules (receptors) on the surface...
This phase I/II trial investigates the best dose, possible benefits and/or side effects of tazemetostat in combination with dabrafenib and trametinib in treating patients with melanoma that has a specific mutation in the BRAF gene (BRAFV600) and that has spread from where it first started (primary site) to other places in the body (metastatic). Tazemetostat, dabrafenib, and trametinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving tazemetostat in combination with dabrafenib and trametinib may stabilize BRAFV600 mutated melanoma.
This phase III trial compares the effect of adding lomustine to standard chemotherapy with temozolomide and radiation therapy versus temozolomide and radiation therapy alone in shrinking or stabilizing newly diagnosed MGMT methylated glioblastoma. MGMT methylated tumors are more likely to respond to temozolomide chemotherapy. Temozolomide is in a class of medications called alkylating agents. It works by damaging the cell's DNA and may kill tumor cells and slow down or stop tumor growth. Lomustine is a chemotherapy drug and in a class of medications called alkylating agents. It damages the cell's DNA and may kill tumor cells. Radiation therapy uses high energy x-ray photons to kill...
This phase II trial tests how well erdafitinib works in controlling IDH-wild type (WT), FGFR-TACC gene fusion positive gliomas that have come back after a period of improvement (recurrent) or that are growing, spreading, or getting worse (progressive). Erdafitinib is in a class of medications called kinase inhibitors. It works by blocking the action of an abnormal FGFR protein that signals tumor cells to multiply. This may help keep tumor cells from growing and may kill them. Giving erdafitinib may help to slow the growth of, or to shrink, tumor cells in patients with recurrent or progressive IDH-wild type gliomas with FGFR-TACC gene fusion.
This phase II trial compares tuvusertib in combination with avelumab to tuvusertib alone to determine whether the combination therapy will lengthen the time before the cancer starts getting worse in patients with Merkel cell cancer that has not responded to previous treatment (refractory). Tuvusertib is a drug that inhibits an enzyme called ataxia telangiectasia and Rad3 related (ATR) kinase, which is an enzyme that plays a role in repair of damaged deoxyribonucleic acid (DNA) as well as tumor cell replication and survival. It may lead to tumor cell death by inhibiting ATR kinase activity. Immunotherapy with monoclonal antibodies, such as avelumab, may help the body's...
This phase II trial compares the effect of adding triapine to lutetium Lu 177 dotatate versus lutetium Lu 177 dotatate alone (standard therapy) in shrinking tumors or slowing tumor growth in patients with neuroendocrine tumors that have spread from where they first started (primary site) to other places in the body (metastatic). Triapine may stop the growth of tumor cells by blocking some of the enzymes needed for deoxyribonucleic acid synthesis and cell growth. Lutetium Lu 177 dotatate is a radioactive drug. It binds to a protein called somatostatin receptor, which is found on some neuroendocrine tumor cells. Lutetium Lu 177 dotatate builds up in these cells and gives off...
This phase II trial studies how well cabozantinib works in combination with nivolumab and ipilimumab in treating patients with rare genitourinary (GU) tumors that has spread from where it first started (primary site) to other places in the body. Cabozantinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Immunotherapy with monoclonal antibodies, such as nivolumab and ipilimumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving cabozantinib, nivolumab, and ipilimumab may work better in treating patients with genitourinary tumors that have no treatment options...
This phase II trial studies how well lutetium Lu 177 dotatate works in treating patients with prostate cancer with neuroendocrine differentiation that has spread to other places in the body (metastatic). Neuroendocrine differentiation refers to cells that have traits of both hormone-producing endocrine cells and nerve cells. These cells release hormones into the blood in response to a signal from the nervous system. Hormones are biological substances that circulate through the bloodstream to control the activity of other organs or cells in the body. Lutetium Lu 177-dotatate is a radioactive drug. It binds to a protein called somatostatin receptor, which is found on some...
This is a multi center, Phase I, Phase II and surgical study of the CX-4945 drug (silmitasertib sodium) for patients with recurrent SHH (Sonic Hedgehog) medulloblastoma
This phase II trial studies the effect of capecitabine and temozolomide after surgery in treating patients with high-risk well-differentiated pancreatic neuroendocrine tumors. Chemotherapy drugs, such as capecitabine and temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving capecitabine and temozolomide after surgery could prevent or delay the return of cancer in patients with high-risk well-differentiated pancreatic neuroendocrine tumors.