Patients and caregivers are often interested in learning more about clinical trials for brain tumors. It can be confusing and overwhelming to understand what clinical trial may be best for you or your loved one. The NBTS Clinical Trial Finder is an easy way to search for a local trial treatment for your specific tumor type.
Use these filters to find a trial that meets your needs. If you are interested in learning more about a trial, contact the site coordinator via email or phone. We strongly recommend that you consult with your healthcare provider about the trials that interest you and refer to our terms of service below.
National Brain Tumor Society’s patient navigator is available to you to answer questions as you review your search results from the NBTS Clinical Trial Finder and can also assist you in identifying questions for you to pose with your healthcare provider. You can reach our patient navigator at [email protected].
The purpose of a clinical trial is to determine the most effective and safest treatment for a disease. Clinical trial evaluation is a key step to translating research into new medicines that can provide better outcomes for patients. The performance of clinical trials is a vital component of the U.S. Food and Drug Administration’s drug approval process, without which advances in therapeutics for brain tumor patients would not be possible. Often the lengthiest aspect of the drug approval process is finding people to participate in trials. The NBTS Clinical Trial Finder is intended to help raise awareness and increase participation in clinical trials to facilitate brain tumor research and accelerate the development of new drugs and treatments for patients.
The trials included in the NBTS Clinical Trial Finder are listed on ClinicalTrials.gov, a service of the U.S. National Institutes of Health, providing information on publicly and privately supported clinical studies of human participants with locations in all 50 States and in 196 countries.
This is an open label, single arm, parallel-group, multicentre, and dose finding study to evaluate the safety of ascending radioactive dose levels of 131I-TLX101 administered intravenously in combination with best standard of care in newly diagnosed GBM patients.
This is a Phase I clinical trial to assess the safety and dosimetry profiles of 177Lu-DOTA-EB-TATE in patients with advanced, metastatic or inoperable, somatostatin receptor-positive, well-differentiated GEP-NETs.
The purpose of this study is to determine the use of 177Lu-PP-F11N for imaging and therapy of patients with advanced medullary thyroid carcinoma (MTC). 177Lu-PP-F11N is a gastrin analogon, binding to cholecystokinin-2 receptors. This receptors show an overexpression on more than 90 % of medullary thyroid carcinomas. In the pilot (phase 0) study investigators will correlate the tumour detection rate with the surgery and histology (proof of concept study). Furthermore, kidney protection and dosimetry studies will be performed in order to determine the kidney protection protocol and starting activity for the dose escalation study in...
The LuDO-N Trial is a multi-centre phase II clinical trial on 177Lu-DOTATATE treatment of recurrent or relapsed high-risk neuroblastoma in children. The LuDO-N Trial builds on the experience from the previous LuDO Trial and utilises an intensified dosing schedule to deliver 2 doses over a 2-week period, in order to achieve a maximal effect on the often rapidly progressing disease. This strategy requires a readiness for autologous stem cell transplantation in all patients, but is not anticipated to increase the risk of long-term sequelae, since the cumulative radiation dose remains unchanged. The primary aim of the study is to assess...
The hypothesis of this diagnostic performance study is that, for patients treated for immunotherapy-treated melanoma or NSCLC, some metabolic parameters of the 18FDG dual-point PET scan distinguish inflammatory pseudo-progression from tumor progression true and thus improve the evaluation of tumor response to immunotherapy
A single centre non-randomized, non-blinded phase III prospective cohort study of 18F-DOPA PET/CT imaging in specific patient populations: 1. Pediatric patients (less than 18 years old) with congenital hyperinsulinism. 2. Pediatric patients (less than 18 years old) with neuroblastoma. 3. Pediatric (less than 18 years old) or Adult patients (18 or older) with known or clinically suspected neuroendocrine tumor. 4. Adult patients (18 or older) with a clinical suspicion of Parkinson's disease or Lewy body dementia. 5. Pediatric (less than 18 years old) or Adult patients (18 or older) with brain...
The goal of this clinical trial is to use new imaging methods to help in finding out whether the imaging shows that there is a tumor in people with a brain metastasis. The main question it aims to answer is whether positron emission tomography (PET) and magnetic resonance imaging (MRI) find cancerous tissue better than other types of imagining. Participants will undergo a single PET/MRI scan, followed by a separate MRI scan with a tracer. Study participation will last about 3 hours.
The hypothesis of this exploratory clinical trial in patients with high-grade a primary brain tumor who receive chemoradiation is that the PET imaging agents [18F]Fluciclovine and/or [18F]FLT will be a better predictor of tumor response than standard MRI based brain tumor response criteria. When used in conjunction, the two PET agents may be better able to predict tumor aggressiveness and thus overall survival than the use of individual-tracer PET biomarkers. This may eventually lead to improved assessment of response (including time to progression and overall survival) and differentiation of tumor recurrence/progression from ...
This is a pilot imaging study in participants treated with stereotactic radiosurgery (SRS) to treat brain metastasis. The purpose of this study is to see whether 18F-Fluciclovine positron emission tomography (PET) can be used as a biomarker to measure response or progression of brain metastasis after SRS.
The purpose of the study is to investigate the use of the investigational agent Axumin (fluciclovine-F18) with PET/CT imaging in combination with standard MR imaging to detect remaining or recurrent brain tumor.