This research study will evaluate how well brain metastases associated with HER-2 positive breast cancer can be controlled using a type of radiation known as stereotactic radiosurgery (SRS) when combined with three therapeutic agents, tucatinib, capecitabine, and trastuzumab. The combined use of SRS with the three drugs is considered investigational.
The proposed study will evaluate the safety and efficacy of XRT followed by systemic therapy among patients with HER2+ metastatic breast cancer and LMD
Neuroblastoma is a malignant tumor that develops in infants and kids. Dysregulation of histone acetylation is associated with a series of malignant tumors. Neuroblastoma is caused by defective neural crest differentiation due to abnormal gene regulation.
This is a pilot study to assess a new methodology developed for High Grade Glioma (HGG). FMISO PET (Fluoromisonidazole-PET) allows researchers to study whether tumor cells lack oxygen (hypoxia). FLT PET (Fluorodeoxythymidine-PET) allows researchers to study the increase in the number of cells as a result of cell growth and cell division (proliferation). Tumors that have low oxygen levels and/or are dividing fast shall resist to standard cancer treatment. The study will compare FMISO PET and FLT PET imaging techniques with molecular biomarkers of hypoxia, angiogenesis, and cellular proliferation in tissue. proliferation).This...
Background: Some people with brain tumors have seizures related to the tumor. This is called tumor-related epilepsy. Usually brain tumors are treated by removing as much of the brain tumor as possible without causing problems. Researchers think this may improve the outcome for people with brain tumors. It may completely relieve or greatly reduce the number of seizures they have. Objectives: To evaluate people with brain tumors that are associated with seizures and to offer surgical treatment. Also, to study how surgery affects seizures. Eligibility: People age 8 and older who have a brain tumor with...
The goal of this observational study is to learn about the effectiveness of Optune® (Tumor Treating Fields) in newly diagnosed glioblastoma (GBM) in China. The main question it aims to answer are: - The efficacy of Optune® as an concomitant/adjuvant to radiation therapy (RT) and temozolomide (TMZ) alone in the treatment of newly diagnosed GBM patients. - The effectiveness of Optune® given concomitantly with RT and TMZ in newly diagnosed GBM patients, compared to RT and TMZ alone. Participants will: - Receive or not receive TTFields. - Concomitantly or adjuvantly receive TTFields.
This clinical trial tests the safety and side effects of tumor treating fields in treating patients with gliomas located in the brainstem. Optune is a wearable, portable, treatment that creates low-intensity, wave-like electric fields called tumor treating fields (TTFields), which interfere with cancer cell division. TTFields may prevent growth or decrease size of gliomas in patients
Glioma is the most common primary malignant intracranial tumor, characterized by limited clinical treatment options and extremely poor prognosis. There is an urgent need for the development of new technologies and clinical practice. With the advancement of immunotherapy, tumor therapeutic vaccines have emerged as a hot topic in the field of solid tumor immunotherapy. Several clinical trials have confirmed that tumor vaccines can improve the prognosis of glioma patients. Vaccines are the first systemic treatment technology in nearly 30 years that can simultaneously extend the overall survival of patients with newly diagnosed ...
This study is to evaluate the efficacy and safety of TY-9591 in first-line treatment of patients with EGFR-sensitive mutation-positive non-small cell lung cancer with brain metastases compared to Osimertinib.
In this proposal, the investigators introduce advanced diffusion and volumetric imaging techniques along with innovative, automated image parcellation methods to identify critical brain regions, incorporate into cognitive-sparing SRS, and analyze biomarkers of radiation response. This work will advance the investigators' understanding of neurocognitive changes after brain SRS and help create interventions that preserve cognitive-function in brain metastases patients.