The management of liver metastases in neuroendocrine neoplasms is challenging. Peptide receptor radionuclide therapy with radiolabeled somatostatin analogs (SSA) is one of the most promising therapeutic options. As liver is the most frequent site of metastatic disease, our project proposes to compare administration of radiolabeled SSA by arterial intrahepatic infusion (experimental approach) vs intravenous administration (conventional). Evaluation will be made by (i) comparing 68Ga-DOTA-peptides uptake after intra-hepatic versus intravenous route (imaging), (ii) by evaluating the safety of an additional intra-hepatic administration of therapeutic radiolabeled SSA (therapy).
The purpose of this study is to see if Cs-131 brachytherapy is effective in people with recurrent brain cancer who are scheduled to have brain surgery for removal of their tumor(s). The researchers would like to see whether Cs-131 prevents brain tumors from growing back after surgery.The researchers will compare Cs-131 brachytherapy (which occurs during brain surgery) with the usual approach of brain surgery without brachytherapy. The researchers will compare both the effectiveness and safety of the two approaches.
This study is the first step in testing the hypothesis that adding Photobac® Photodynamic Therapy to surgical removal of a glioblastoma or gliosarcoma will be both safe and effective. Photodynamic Therapy (PDT) combines light and a photosensitizer. PDT has been used to treat a variety of cancers with varying degrees of success. For the past thirty years Photolitec has been working to develop a treatment for glioblastoma or gliosarcoma using light and a photosensitizer. Photolitec's scientists were looking for a photosensitizer that: 1. has no significant systemic toxicity apart from some temporary skin photosensitivity, 2. crosses the blood brain barrier, ...
This phase I trial tests the safety, side effects, and best dose of intracerebroventricularly (ICV) administered CD19-chimeric antigen receptor (CAR) T cells in treating patients with central nervous system (CNS) lymphoma. CAR T cell therapy is a type of treatment in which a patient's T cells (a type of immune system cell) are changed in the laboratory so they will attack cancer cells. T cells are taken from a patient's blood. Then the gene for a special receptor that binds to a certain protein, CD19, on the patient's cancer cells is added to the T cells in the laboratory. The special receptor is called a chimeric antigen receptor (CAR). Large numbers of the CAR T cells are grown...
This phase I trial tests the safety, side effects and best dose of TGFβR2KO/IL13Rα2 chimeric antigen receptor (CAR) T-cells given within the skull (intracranial) in treating patients with glioblastoma or IDH-mutant grade 3 or 4 astrocytoma that has come back after a period of improvement (recurrent) or that is growing, spreading, or getting worse (progressive). CAR T-cell therapy is a type of treatment in which a patient's T cells (a type of immune system cell) are changed in the laboratory so they will attack tumor cells. T cells are taken from a patient's blood. When the cells are taken from the patient's own blood, it is known as autologous. Then the gene for special receptors...
This open label, single country trial will test if local injection of low-dose ipilimumab and nivolumab, is safe and reduces the sentinel node positivity in high-risk stage II melanoma patients.
This phase I trial investigates the effects of influenza vaccine in treating patients with stage I-IV melanoma. While intramuscular administration of influenza vaccine provides immunization against the influenza virus, giving influenza vaccine directly into the tumor (intralesional) may decrease the size of the injected melanoma tumor, or the extent of the melanoma within the body.
The purpose of the study is to calculate magnitude, type of intraoperative brain shift and assess possibility of it's prediction.
In this study patients undergoing simultaneous translabyrinthine vestibular schwannoma resection and cochlear implantation are included. The goal of the study is to correlate the eABR results with postoperative hearing results.
The purpose of this study is to obtain images of brain tumours during surgery using a new type of surgical camera. The study will assess how the information obtained from the images during surgery matches the removed tissue. Data will also be used to develop the system's key computer-processing features. This will enable real-time information to be given to the surgeon whilst they are performing the procedure and has the potential to make neurosurgery safer and more precise.