Spatial and Temporal Characterization of Gliomas Using Radiomic Analysis

Study Purpose

Glioma are type of primary brain tumors arising within the substance of brain. Different type of gliomas are seen which are classified depending upon pathological examination and advanced molecular techniques, which help to determine the aggressiveness of the tumor and outcomes. Artificial intelligence uses advanced analytical process aided by computer which can be undertaken on the medical images. We plan to use artificial intelligence techniques to identify the abnormal areas within the brain representing tumor from the radiological images. Also, similar approach will be undertaken to classify gliomas with good or bad prognosis, to differentiate glioma from other type of brain tumors, and to detect response after treatment.

Recruitment Criteria

Accepts Healthy Volunteers

Healthy volunteers are participants who do not have a disease or condition, or related conditions or symptoms

No
Study Type

An interventional clinical study is where participants are assigned to receive one or more interventions (or no intervention) so that researchers can evaluate the effects of the interventions on biomedical or health-related outcomes.


An observational clinical study is where participants identified as belonging to study groups are assessed for biomedical or health outcomes.


Searching Both is inclusive of interventional and observational studies.

Observational
Eligible Ages 1 Year and Over
Gender All
More Inclusion & Exclusion Criteria

Inclusion Criteria:

  • - Patients with glioma or glioma-mimicking pathology with imaging available in TMC between January 2010 and December 2022.

Exclusion Criteria:

  • - Imaging done outside TMC.
  • - Motion artifacts or other artifacts causing image degradation.
- Size of tumor or region of interest < 1 cm in the largest dimension

Trial Details

Trial ID:

This trial id was obtained from ClinicalTrials.gov, a service of the U.S. National Institutes of Health, providing information on publicly and privately supported clinical studies of human participants with locations in all 50 States and in 196 countries.

NCT06036381
Phase

Phase 1: Studies that emphasize safety and how the drug is metabolized and excreted in humans.

Phase 2: Studies that gather preliminary data on effectiveness (whether the drug works in people who have a certain disease or condition) and additional safety data.

Phase 3: Studies that gather more information about safety and effectiveness by studying different populations and different dosages and by using the drug in combination with other drugs.

Phase 4: Studies occurring after FDA has approved a drug for marketing, efficacy, or optimal use.

Lead Sponsor

The sponsor is the organization or person who oversees the clinical study and is responsible for analyzing the study data.

Tata Memorial Centre
Principal Investigator

The person who is responsible for the scientific and technical direction of the entire clinical study.

Dr. ARCHYA DASGUPTA, MD
Principal Investigator Affiliation Tata Memorial Hospital
Agency Class

Category of organization(s) involved as sponsor (and collaborator) supporting the trial.

Other
Overall Status Recruiting
Countries India
Conditions

The disease, disorder, syndrome, illness, or injury that is being studied.

Glioma
Additional Details

In the proposed retrospective study, images (MRI, CT, or PET) undertaken as part of standard of care (pre-treatment, post-operative, response assessment, and surveillance) will be analyzed. The DMG database maintaining records of patients registered in TMC neuro-oncology DMG will be screened to identify the patients eligible for the study. With approximately 500-600 gliomas seen annually and approximately 80-100 patients/year having pre-treatment imaging, we expect a ceiling of 1000 patients during 2010-2022, which will be the maximum number of patients used for the analysis. All the images will be downloaded from the PACS applying anonymization filters, with clinical records extracted by review of electronic medical records and radiation plans. Imaging pre-processing will be done, which will include skull stripping and registration across different modalities (e.g., MRI and CT) or different sequences (e.g., T1C, T2W, ADC) will be done using rigid or deformable algorithms as suited best for the modality. Image segmentation to classify the region of interest will be done and verified individually by a neuro-radiologist or nuclear medicine physician as appropriate. The segmentations will be done to identify T1-contrast enhancing region (CE), non-enhancing regions (NE), and necrosis (NEC) guided by T1-C, T2W, and T2-FLAIR areas. The contours and the images will be resampled to a uniform resolution for different sequences or modalities (e.g., T2W/ ADC/ PET) to match either with the 3D sequence (e.g., FSPGR sequence) or available images with the least slice thickness. Subsequently, normalization techniques (e.g., histogram normalization/ Z-score normalization) will be undertaken within the individual images and across the entire dataset to account or image heterogeneity, including field strength for MRI and different image acquisition parameters. For auto segmentation, both supervised and unsupervised machine learning algorithms will be applied. For the supervised model, the entire database will be split into training and test cohorts for the model and application development, respectively. The effectiveness of the automated model will be tested using the dice similarity coefficient between manually segmentation regions and AI-based segments. For prognostication of gliomas, the next step will include feature extraction, which will consist of first-order (including shape, histogram), second-order or higher-order (e.g., different texture features like GLCM, GLDM, GLSZM, etc.), or deep learning techniques will be employed. Delta-radiomics will include temporal changes in the radiomic features from different time points for the same patient within the entire volume and individual regions. Subsequently, feature reduction and selection techniques like LASSO, recursive feature elimination will be used to shortlist the number of features depending on the sample size. The outputs will be decided based on the modeling defined for specific class problems (e.g., tumor vs.#46; edema, recurrence vs.#46; pseudo progression, outcomes, tumor region of interest vs.#46; non-tumoral area) as obtained from the clinical information. Any class imbalance will be addressed using methods like random subset sampling or SMOTE analysis for data augmentation of the minority class. Machine learning algorithms like LDA, k-NN, SVM, random forest, AdaBoost, etc., will be applied singularly or in combination as an ensembled classifier to find the model with best performance. Deep learning classifiers will be used along with feature-based modeling and compared to test the classifier's applicability. Validation techniques like leave-one-out validation, k-fold validation, and split (into training and test cohort) will be used to assess the stability of the machine learning model. Radiomic analysis will be done by data scientist/ study investigators with expertise in data analytics. All segmentations will be done on open-source software like ITK snap (itksnap.org) or 3D Slicer (slicer.org). Feature extraction and modeling will be done using open-source software like Python (python.org). With continuous advancements in computational science, available newer analytical techniques and platforms will be applied as appropriate by collaborators from Indian Statistical Institute, Kolkata, Machine Intelligence Unit by sharing of the anonymized data.

Contact a Trial Team

If you are interested in learning more about this trial, find the trial site nearest to your location and contact the site coordinator via email or phone. We also strongly recommend that you consult with your healthcare provider about the trials that may interest you and refer to our terms of service below.

International Sites

Tata Memorial Hospital, Mumbai, Maharashtra, India

Status

Recruiting

Address

Tata Memorial Hospital

Mumbai, Maharashtra, 400012

Site Contact

Dr Archya Dasgupta, MD

[email protected]

022-24177000

Stay Informed & Connected