Establishing Radiolabelled PSMA as a Target for Glioma Treatment

Study Purpose

A study is being performed to observe whether a novel type of brain imaging using a technique called PET-MRI may provide useful information in the 'mapping' of adult primary brain tumours. It employs a radiolabelled molecule targeting a particular molecule called PSMA which is hypothesised to be a marker of aggression in primary brain tumours. 'Mapping' of the concentration and distribution of this molecule within brain tumours via PET-MRI may provide vital clinical information regarding the extent and timing of treatment.

Recruitment Criteria

Accepts Healthy Volunteers

Healthy volunteers are participants who do not have a disease or condition, or related conditions or symptoms

No
Study Type

An interventional clinical study is where participants are assigned to receive one or more interventions (or no intervention) so that researchers can evaluate the effects of the interventions on biomedical or health-related outcomes.


An observational clinical study is where participants identified as belonging to study groups are assessed for biomedical or health outcomes.


Searching Both is inclusive of interventional and observational studies.

Interventional
Eligible Ages 18 Years and Over
Gender All
More Inclusion & Exclusion Criteria

Inclusion Criteria:

  • - Individuals of 18 years or older.
  • - Referred for surgery (resection or biopsy) of presumed high grade primary brain tumour (based on imaging features of aggression e.g. perfusion imaging, diffusion restriction etc.).
As standard, all patients will have had a full body CT and other investigations to rule out metastatic disease (this has a very high negative predictive value).
  • - Written informed consent.

Exclusion Criteria:

  • - Patient already enrolled in a drug trial.
  • - Contra-indication for MRI contrast.
  • - Contra-indication for radiotracer.
  • - Inability to give consent.
- Patient is pregnant or planning to become pregnant

Trial Details

Trial ID:

This trial id was obtained from ClinicalTrials.gov, a service of the U.S. National Institutes of Health, providing information on publicly and privately supported clinical studies of human participants with locations in all 50 States and in 196 countries.

NCT05263466
Phase

Phase 1: Studies that emphasize safety and how the drug is metabolized and excreted in humans.

Phase 2: Studies that gather preliminary data on effectiveness (whether the drug works in people who have a certain disease or condition) and additional safety data.

Phase 3: Studies that gather more information about safety and effectiveness by studying different populations and different dosages and by using the drug in combination with other drugs.

Phase 4: Studies occurring after FDA has approved a drug for marketing, efficacy, or optimal use.

N/A
Lead Sponsor

The sponsor is the organization or person who oversees the clinical study and is responsible for analyzing the study data.

King's College Hospital NHS Trust
Principal Investigator

The person who is responsible for the scientific and technical direction of the entire clinical study.

Thomas C Booth, PhD
Principal Investigator Affiliation King's College London
Agency Class

Category of organization(s) involved as sponsor (and collaborator) supporting the trial.

Other
Overall Status Not yet recruiting
Countries United Kingdom
Conditions

The disease, disorder, syndrome, illness, or injury that is being studied.

Glioma, Malignant
Additional Details

One potential avenue of high grade glioma treatment involves a 'theranostic' radiotherapeutic approach. This consists of two stages: firstly, a particular protein expressed specifically by the tumour is radiolabelled with a targeted radioligand emitting gamma radiation, enabling confirmation of the presence, concentration and distribution of this target protein (diagnostic stage). Following this, a similar ligand is this time attached to an alpha or beta-emitter, enabling targeted tumour destruction (therapeutic stage). There is growing, but limited, evidence that prostate specific membrane antigen (PSMA) is strongly and specifically expressed in high grade glioma and may be a potential theranostic target [Wernicke 2011, Unterrainer 2017]. It has already been used extensively as a theranostic target in metastatic prostate cancer, demonstrating safety and efficacy in this condition [Abou et al 2020]. The clinical outcomes shown in prostate cancer, along with evidence of PSMA expression in high grade glioma, led the study team to convene an Incubator Day with a group of experts to explore the possibility of developing a PSMA-targeting theranostic agent in high grade glioma. Expertise included PSMA theranostics (Prof Lewington), neuro-oncology (Dr Brazil, Guy's and St Thomas' Hospital (GSTT)), neurosurgery (Prof Ashkan, King's College Hospital (KCH)), neuropathology (Prof Al-Sarraj, KCH), neuroradiology (Dr Booth, KCH) PSMA PET imaging (Prof Gary Cook and Prof Alexander Hammers GSTT/KCL), nuclear physics (Prof Paul Marsden GSTT/KCL), and PSMA radiopharmaceutical chemistry (Prof Blowers, KCL). It was concluded that a PSMA-targeting theranostic agent has the potential to be a safe and effective treatment for high grade glioma. The regulatory pathway should be eased enormously by the precedent of use in prostate cancer, which would obviate the need for pre-clinical studies. This approach was conditional upon two objectives: 1. Perform a series of five [68Ga]PSMA PET scans for dosimetry analysis and assessment of the retention of the tracer in the tumour (Using GSTT/KCL PET/MRI) prior to biopsy, at the same time as the patient's routine brain tumour imaging series. At time of recurrence a further [68 Ga]PSMA PET-MRI scan may be performed in each patient (depending on whether or not recurrence occurs during the study period) to assess for change in the standardised uptake value (SUV). 2. Performing immunohistochemical analysis on high grade glioma specimens (prospectively in patients enrolled in this study with additional retrospective samples), in order to replicate published evidence on the expression of PSMA in such tumours, and also to demonstrate in the prospective cohort, a correlation between imaging detection of [68 Ga]PSMA and histopathological detection in stereotactic brain tumour biopsy samples (Using KCH neuropathology facilities).

Arms & Interventions

Arms

Experimental: Brain tumour patients

Patients will be those undergoing routine care of primary brain tumours. Study group patients will undergo additional PET-MRI examination and biopsies in addition to the standard of care.

Interventions

Diagnostic Test: - PET-MRI

For the diagnostic imaging aspect included in this pilot study, [68Ga]PSMA-11 will be used. This is a peptidomimetic agent with a covalently bound chelator (HBED-CC) that is FDA-approved in prostate cancer imaging. We will use PET-MRI to visualise a) the concentration and b) the distribution of this tracer to establish a functional map of primary brain tumour activity

Procedure: - Brain tumour biopsy

All patients included in our study will undergo stereotactic surgery for biopsy/resection of the tumour as part of the standard of care at KCH. During this study we will not vary from the surgical standard of care for primary brain tumours and will only extend the surgery time due to additional stereotactic biopsies (an additional 3 biopsies increasing the time of the operation by ~30 minutes). Professor Ashkan (KCH) has defined the additional surgical risk of performing these biopsies to be ~0%, since targeted biopsies will only be taken within the tumour just before resection. The stereotactic biopsy may be targeted to areas of high [68Ga]PSMA SUV within the tumour as defined by the PET MRI scan.

Contact a Trial Team

If you are interested in learning more about this trial, find the trial site nearest to your location and contact the site coordinator via email or phone. We also strongly recommend that you consult with your healthcare provider about the trials that may interest you and refer to our terms of service below.

International Sites

King's College London, London, United Kingdom

Status

Address

King's College London

London, ,

Site Contact

Professor Reza Razavi, PhD

[email protected]

0)207 8483224

Stay Informed & Connected